Hatchery Influence on the Estuarine Life Histories of Juvenile Salmon

D. L. Bottom

NOAA Northwest Fisheries Science Center and

K. K. Jones
Oregon Department of Fish and Wildlife

Hypothesis:

Hatchery programs may prevent river basins from realizing their full productive or resilience potential by limiting phenotypic expression by salmon

Direct effects:

Salmon rearing patterns and behaviors in the estuary

Indirect effects:

Naturally spawning hatchery fish that, in turn, may modify estuary rearing patterns and behaviors

Hatchery Influence in the Columbia and Salmon River Estuaries

	Columbia River	Salmon River
Basin size (km²)	660,480	194
Total hatcheries	64	1
Hatchery production	~135,000,000 (all spp.)	~200,000 (Chinook)
Annual run	~1,500,000	~3,000-5,000
% Hatchery returns	~80%	~50%

Salmon River Basin

Columbia River Basin

Percent of Marked Subyearling Chinook Salmon Lower Columbia River Estuary

% of Marked Fish in Beach Seine

2002-06 10%

2007-08 62%

~85% of hatchery Chinook marked since 2007

Temporal Abundance of Hatchery and Wild Chinook and Coho Salmon

Salmon River Estuary 1998 - 2002

Fish Size and Residency Columbia River Estuary

>50% of hatchery fish released averaged >90 mm

Estuary residence time decreases with fish size

Hatchery and Wild Chinook Salmon Lengths Salmon River Estuary

Estuary Residency of Hatchery Coho and Chinook Salmon

Salmon River Estuary 1997 - 2001

Estuary Residency of Wild Juvenile Chinook Salmon by Estuary Zone

Salmon River Estuary 2002

Size-Specific Habitat Use by Columbia River Chinook Salmon

Percent Marked			
	2007	2008	
Main-stem	11.7	22	
Wetland Channel	1.0	7.0	

Lord Island

Habitat Selection by Hatchery and Wild Coho Salmon

Salmon River Estuary

Indirect Hatchery Effects on the Estuary: Coho Salmon Spawning Time

Indirect Hatchery Effects on the Estuary:

Spawning
Distribution
in Salmon
River

Indirect Hatchery Effects on the Estuary: Chinook Salmon Spawning Time

- Directional selection not as obvious
- Spawning timing has narrowed

Indirect Hatchery Effects: Chinook Salmon Spawning Distribution,

Salmon River Basin

- High % of hatchery fish spawn near hatchery, just above the estuary
- Lower basin spawners earliest
- Higher % of wild fish found in traditional spawning areas

Indirect Hatchery Effects:

Effects of spawner distribution on estuary use by Salmon River Chinook

- Fish low in the basin arrive earliest and at small sizes
- Fish high in the basin rear longer in fresh water, arrive later

In basins dominated by hatchery production, salmon interactions in the estuary are a downstream expression of hatchery practices

- Hatchery location → time of arrival
- Timing and number of fish released

 → temporal patterns of abundance
 and migration
- Size at release → residence times, habitat use, prey selection, ocean entry

Columbia River Estuary

From Dawley et al. (1986)

Conclusions

- Hatcheries "reallocate space" by replacing the dispersed distributions and emergence times of naturally spawned fish with point sources of similarly sized individuals released in concentrated pulses
- Intensive hatchery production diminishes behavioral complexity, including diversity of estuarine rearing strategies and ocean entry times by juvenile salmon
- Replacement of natural production with hatchery fish may cause productive estuarine habitat opportunities to be underutilized
- Concentration of spawning time and distribution further simplifies salmon life histories and may create "mismatches" in estuarine/ocean environments

Special Thanks

Lance Campbell
Trevan Cornwell

Susan Hinton

Curtis Roegner

Si Simenstad

Washington Department of Fish and Wildlife

Oregon Department of Fish and Wildlife

NOAA Fisheries

NOAA Fisheries

University of Washington

Oregon Sea Grant

Oregon Watershed Enhancement Board

U.S. Army Corps of Engineers

Bonneville Power Administration