BC and Yukon Salmon Data Access Project

prepared for
Salmon Data Access Working Group First Meeting
3-4 November 2008

Monitoring Strategy for the Conservation of Northern Pacific Rim Salmon - Goal

粦 To augment existing monitoring and analytical efforts in order to identify potential conservation concerns for salmon and their ecosystems before they become irreversible.

Recent salmon data inventory and stock assessment reviews in BC

聯 2004 －Prepare North and Central Coast Fisheries Resource Manuals for FTNO
炇 2004 －Initiate review of core stock assessment programs for North \＆Central coast
罂 2005 －Prepare South Coast and Fraser Fisheries Resource Manuals for FTNO
类 2005 －Initiate Data Inventory for Ecotrust
癸 2006 －Complete Data Inventory for Salmon and Steelhead and Core Stock Assessment Review
發 2007 － $1^{\text {st }}$ index stream review workshop
焱 2008 －link index stream，escapement and CU data

Data Inventory Objectives

* Conduct a survey of salmon datasets in BC and Yukon Territory;
* Assess datasets for quality and utility;
* Assign datasets to Monitoring Tiers; and
* Acquire respective datasets, where available.

Data Inventory and Assessment Components

- allocation of resources for North and Central Coast

Escapement Monitoring Review

比 Organize escapement data by species，statistical area and years of information．
鲑 Ask fisheries managers and regional biologist to identify streams with reliable time series of escapement estimates（i．e．index streams）．
聯 Evaluate information for each index stream．
－Survey methods，quality，years of data，etc．

Field Method Quality Ratings

1) Poor - An estimate of low resolution due to few surveys, counting deficiencies, etc.
2) Fair - An estimate of medium resolution based on two or more visual estimates (e.g. lower quality AUC est.)
3) Good - An estimate of high resolution based on three or more visual inspections (e.g. medium-high quality AUC est.)
4) Very Good - An estimate of high resolution based on M-R data, incomplete fence count, or highly reliable AUC calculation.
5) Excellent - An estimate of high resolution from an unbreached fence count.

Escapement Monitoring Summary

- BC Streams

Species	CUs	Index Streams	1	2	3	4	5	CUs Missed
Sockeye	230	$\mathbf{1 8 1}$	23	$\mathbf{7 0}$	$\mathbf{5 1}$	$\mathbf{2 2}$	$\mathbf{1 5}$	$\mathbf{1 4 2}$
Pink Odd								
Pink Even								
Chum								
Chinook								
Coho								
Steelhead								

Escapement Monitoring Summary

- BC Streams

Species	CUs	Index Streams	1	2	3	4	5	CUs Missed
Sockeye	230	181	23	70	51	22	15	142
Pink Odd	$\mathbf{1 8}$	$\mathbf{2 1 6}$	$\mathbf{0}$	$\mathbf{9 2}$	$\mathbf{1 1 7}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{3}$
Pink Even	$\mathbf{1 2}$	$\mathbf{3 1 2}$	$\mathbf{0}$	$\mathbf{1 1 4}$	$\mathbf{1 9 4}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{2}$
Chum	$\mathbf{3 2}$	$\mathbf{3 8 3}$	$\mathbf{0}$	$\mathbf{1 1 9}$	$\mathbf{2 0 4}$	$\mathbf{1 0}$	$\mathbf{3}$	$\mathbf{5}$
Chinook								
Coho								
Steelhead								

Escapement Monitoring Summary

- BC Streams

Species	CUs	Index Streams	1	2	3	4	5	CUs Missed
Sockeye	230	181	23	70	51	22	15	142
Pink Odd	18	216	0	92	117	6	1	3
Pink Even	12	312	0	114	194	3	1	2
Chum	32	383	0	119	204	10	3	5
Chinook	$\mathbf{5 8}$	$\mathbf{1 2 3}$	$\mathbf{0}$	$\mathbf{2 8}$	$\mathbf{2 6}$	$\mathbf{6 6}$	$\mathbf{3}$	$\mathbf{2 2}$
Coho	$\mathbf{3 7}$	$\mathbf{2 8 6}$	$\mathbf{0}$	$\mathbf{1 0 7}$	$\mathbf{1 3 0}$	$\mathbf{4 0}$	$\mathbf{9}$	$\mathbf{5}$
Steelhead	$\mathbf{2 7}$	$\mathbf{4 8}$	$\mathbf{2 2}$	$\mathbf{4}$	$\mathbf{1 8}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{?}$

Assessing stock \＆fishery status

类 use index stream data to monitor trends in escapement for each Conservation Unit（CU）
然 combine escapement and catch data to estimate total annual stock size and exploitation rates for each CU
婱 For example．．．

Example: A Central Coast Sockeye CU

- Smith Inlet (Long Lake)

Example: A Fraser Chinook CU
 - South Thompson Summer - Age 0.3

Next steps

* Complete review of index stream escapement data.

娄 Link index stream meta data to nuSEDS database.
聯 Review methods used to estimate total annual stock size and exploitation rates for each CU
** Generate abundance and exploitation rate estimates for each CU.

